陈予思

临床医学专业大一课程负责人
校长青年学者

助理教授

教育背景

博士(西安大略大学)

硕士(西安大略大学)

学士(西安大略大学)

研究领域
循证临床决策,卫生技术评估,卫生政策,全球外科及麻醉,生物医学文本挖掘
电子邮件
eunicechan@cuhk.edu.cn
个人简介

陈予思教授分别于2015年、2016年和2019年在加拿大西安大略大学获得应用数学专业的本科、硕士和博士学位,专攻数值线性代数。 研究生毕业后,她加入世界卫生组织指定合作中心MEDICI中心(医学证据、决策完整性和临床影响),在Janet Martin教授和Davy Cheng教授的指导下,从事卫生技术评估和循证决策的博士后研究。 她的主要研究领域包括卫生技术评估、循证决策和卫生政策,同时对于在证据合成和卫生经济学的真实世界应用中利用机器学习和人工智能来优化卫生保健创新的价值有特殊的研究,尤其在医疗保健领域。 陈教授在世界级会议上展示她的研究成果,包括著名的世界麻醉师大会(也被称为麻醉和围手术期医学的奥林匹克大会)。 同时陈教授也各种国际合作做出了卓越贡献,包括新冠/全球手术合作小组(122个国家)和IDEAL合作小组(牛津大学)。  

学术著作

部分学术著作:

1. Chan EYS, Martin J, Cheng D. Magnitude of COVID-19 Deaths Relative to Other Leading Causes of Deaths: A Global Analysis. BMJ Open 2021 (in press).

2. Chan EYS, Martin J, Cheng D. Impact of COVID-19 on excess mortality, life expectancy, and years of life lost in the United States. PLOS One 2021;16(9):e0256835. https://doi.org/10.1371/journal.pone.0256835

3. COVIDSurg Collaborative. SARS-CoV-2 infection and venous thromboembolism after surgery: an international prospective cohort study. Anaesthesia 2021 Aug 24. https://doi.org/10.1111/anae.15563

4. COVIDSurg Collaborative, GlobalSurg Collaborative. Effects of preoperative isolation on postoperative pulmonary complications after elective surgery: an international prospective cohort study. Anaesthesia 2021;76(11):1454-1464. https://doi.org/10.1111/anae.15560

5. COVIDSurg Collaborative, GlobalSurg Collaborative. SARS-CoV-2 vaccination modelling for safe surgery to save lives: data from an international prospective cohort study. Br J Surg 2021;108:1056-1063. https://doi.org/10.1093/bjs/znab101

6. COVIDSurg Collaborative, GlobalSurg Collaborative. Timing of surgery following SARS-C oV-2 infection: an international prospective cohort study. Anaesthesia 2021;76(6):748-758. https://doi.org/10.1111/anae.15458
 

部分文章:

1. Calkin NJ, Chan EYS, Corless RM, Jeffrey DJ, Lawrence P. A Fractal Eigenvector. American Mathematical Monthly 2021 (in press).

2. Chan EYS, Corless RM, Rafiee Sevyeri L. Generalized Standard Triples for Algebraic Linearizations of Matrix Polynomials. The Electronic Journal of Linear Algebra 2021;37:640-658. https://doi.org/10.13001/ela.2021.4975

3. Chan EYS, Corless RM, Gonzalez-Vega L, Sendra JR, Sendra J, Thornton SE. Upper Hessenberg and Toeplitz Bohemians. Linear Algebra and its Applications 2020;601:72-100. https://doi.org/10.1016/j.laa.2020.03.037

4. Chan EYS, Corless RM, Gonzalez-Vega L, Sendra JR, Sendra J. Algebraic linearizations of matrix polynomials. Linear Algebra and its Applications 2019;563:373-99. https://doi.org/10.1016/j.laa.2018.10.028